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Abstract. The spectral determinant of the Schrödinger operator (−∆ + V (x)) on a graph is computed
for general boundary conditions. (∆ is the Laplacian and V (x) is some potential defined on the graph).
Applications to restricted random walks on graphs are discussed.
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1 Introduction

The study of spectral properties of the Laplacian operator
on finite graphs began about fifty years ago. Many differ-
ent domains are interested in the knowledge of those prop-
erties – let us simply mention organic molecules [1], super-
conducting networks [2], vibrational properties of fractal
structures [3], weakly disordered systems [4] and, more re-
cently, quantum chaos [5]. Of course, mathematicians [6]
are also interested in that subject.

Let us come back, for the moment, to the physics of dis-
ordered systems. In [7], the authors emphasized the central
role played by the spectral determinant of the Laplacian in
the computation of the weak localization corrections. By
constructing the Green’s function on the graph, they ob-
tained a compact form for this determinant. (See also [8]
where a path integral approach is developed; in particu-
lar, a trace formula for the Laplacian on a graph [6] is
recovered.)

Recently, the result of [7] was generalized [9,10] to
the spectral determinant det(H + γ) (≡ S(γ)) with
H = −∆+ V (x). V (x) is some external potential defined
in each point x of the graph and γ is a constant (spectral
parameter). In [10], the computation was done with the
help of a path integral representation of the spectral deter-
minant and also using time-dependent harmonic oscillator
properties. Schrödinger operators have also been consid-
ered in [11] where the scattering matrix is computed for
graphs made of one-dimensional wires connected to exter-
nal leads.

All this was done assuming continuity of the eigenfunc-
tions at each vertex.

Nevertheless, this “natural”(!) assumption is highly
questionable.

For instance, in [12,13], the authors argue that the re-
duction of a realistic system of coupled tubes to a graph
model is far from being obvious. In particular, serious
problems arise from the finite thickness of the tubes, the

geometry of the connection regions and also from eventu-
ally applied external fields. Analyzing in details a model
of junction (what they call the “geometric-scatterer junc-
tion”), they suggest that it would be more appropriate
to consider general boundary conditions on the resulting
graph.

This is the point of view we will take up in this paper
when computing the spectral determinant1. Moreover, we
will show that “playing” with the boundary conditions
allows us to study some properties of closed random walks
on any graph. For instance, it is possible to count the
number of such walks when the number of backtrackings
on each of them is fixed [15–17].

The paper is organized as follows. In Section 2, we
set up the notations that will be used throughout the
paper. Section 3 will be devoted to the computation of
the spectral determinant S(γ) for general boundary con-
ditions. Another expression for S(γ) will be derived in Sec-
tion 4 for permutation-invariant conditions. Applications
to countings of restricted random walks on any graph will
be discussed at the end of this section. Finally, a short
conclusion will be given in Section 5.

2 Definitions and notations

We consider a graph G made of V vertices, numbered
from 1 to V , linked by B bonds of finite lengths. The
coordination of vertex α is mα (

∑V
α=1 mα = 2B).

On each bond [αβ], of length lαβ, we define the coor-
dinate xαβ that runs from 0 (vertex α) to lαβ (vertex β).
We will also use xβα = lαβ − xαβ .

1 Spectral properties of graphs with general – even random –
boundary conditions imposed at the vertices have already been
studied in the context of quantum chaos [14].
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To avoid cumbersome notations, Φ being some func-
tion defined on the graph, we will simply write

∫
[αβ] Φ for∫ lαβ

0 Φ(xαβ) dxαβ .
An arc (αβ) is defined as the oriented bond

from α to β. Each bond [αβ] is therefore associ-
ated with two arcs (αβ) and (βα). In the sequel, we
will consider the following ordering of the 2B arcs:
(1α1)(1α2) . . . (1αm1)(2β1) . . . (2βm2) . . .

Concerning the eigenfunctions φ of H on the graph,
we define on each link [αβ]:

φ(αβ) ≡ lim
xαβ→0

φ(xαβ) ; φ(βα) ≡ lim
xβα→0

φ(xβα) (1)

φ′(αβ) ≡ lim
xαβ→0

dφ(xαβ)
dxαβ

; φ′(βα) ≡ lim
xβα→0

dφ(xβα)
dxβα

(2)

(φ′(αβ) is the outgoing derivative at vertex α along the
arc (αβ)).

For the Green’s function G(x, y) (x ∈ [αβ], y anywhere
on the graph), we similarly define:

G(αβ)(y) ≡ lim
xαβ→0

G(xαβ , y) ;

G(βα)(y) ≡ lim
xβα→0

G(xβα, y) (3)

G′(αβ)(y) ≡ lim
xαβ→0

dG(xαβ , y)
dxαβ

;

G′(βα)(y) ≡ lim
xβα→0

dG(xβα, y)
dxβα

· (4)

With the above quantities, we can build the four
(2B × 1) vectors φ, φ′, G(y) and G′(y), respectively of
components φ(αβ), φ′(αβ), G(αβ)(y) and G′(αβ)(y).

In those conditions, the generalized boundary condi-
tions for the operator H on the graph can be written:

C φ + D φ′ = 0 (5)

where C and D are two (2B×2B) constant matrices that
don’t depend on γ.

In [18], the authors established the conditions for the
operator H to be self-adjoint: CD+ must be self-adjoint
and the (2B × 4B) matrix (C,D) must have maximal
rank 2B.

Local boundary conditions connect, for each vertex α,
the φ(αβi)’s to the φ′(αβj)’s, i, j = 1, . . . ,mα. For such
conditions, C and D can be chosen block-diagonal, the
square block Cα (or Dα) being of dimension mα. If, in
addition, we assume that, for each vertex α, the conditions
are invariant in any permutation of the nearest neighbours
of α, we can write:

Cα = cα1 + tαFα (6)
Dα = dα1 + wαFα (7)

where 1 is the unit matrix and Fα is a matrix with all
its elements equal to 1. The constants cα, dα, tα and wα
characterize the boundary conditions in α.

Remark that cα and dα can’t both vanish because of
the maximal rank condition2.

It is easy to realize that the quantity cαφ(αβi) +
dαφ

′
(αβi)

doesn’t depend on i, i.e. it is the same for all
the arcs starting at α. To conclude this section, let us
mention the two limiting cases:

i) dα = 0 that ensures the continuity of φ at vertex α
(thus φ(α) is defined) and leads to

mα∑
j=1

φ′(αβj) = −
(
cα +mαtα

wα

)
φ(α) ≡ λαφ(α)

(λα = 0 corresponds to Neumann boundary condi-
tions).

ii) cα = 0. In that case, all the outgoing derivatives in α
are equal.

Now, we turn to the computation of the spectral de-
terminant S(γ)(≡ det(H + γ)) of the operator H =
−∆ + V (x) defined on the graph with boundary condi-
tions given by (5).

3 General boundary conditions

As in [7,9], we construct the Green’s function G(x, y) on
the graph:

(γ +H)G(x, y) = δ(x− y) (8)

and use the relationship:∫
Graph

G(x, x)dx = ∂γ ln det(H + γ). (9)

In this section, we will consider, for each bond [αβ],
two independent solutions, ψαβ and ψβα, of the equation:

(H + γ)ψ = 0. (10)

Those functions are chosen to satisfy:

ψαβ(α) = 1 ; ψαβ(β) = 0 (11)

ψβα(α) = 0 ; ψβα(β) = 1. (12)

Their Wronskian may be presented as:

Wαβ ≡ ψαβ
dψβα
dxαβ

− ψβα
dψαβ
dxαβ

=
dψβα
dxαβ

(α) = −dψαβ
dxαβ

(β) = Wβα· (13)

2 Moreover, this condition imposes that, at least, one of the
two matrices, Cα or Dα, is invertible and can be set equal to
1 because of the homogeneity of condition (5). Finally, self-
adjointness of CD+ implies that only two real parameters are,
actually, necessary to characterize the boundary conditions at
each vertex α [19]. This will appear explicitly in Section 4.2
where our results are expressed in terms of the two parameters
ηα and ρα defined in equations (61, 62).
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We also define:

ψ′αβ(α) ≡ dψαβ
dxαβ

(xαβ = 0) ;

ψ′βα(β) ≡ dψβα
dxβα

(xβα = 0)· (14)

So, let us construct this Green’s function G(x, y). We
first suppose that y belongs to some link [ab].

If x is located on another bond [αβ], we have:

G(x, y) = G(αβ)(y)ψαβ(x) +G(βα)(y)ψβα(x). (15)

Taking the derivative in α and using (13, 14), we get:

G′(αβ)(y) = G(αβ)(y)ψ′αβ(α) +G(βα)(y)Wαβ . (16)

On the other hand, if x belongs to the same bond [ab]
as y, G(x, y) must satisfy, when ε→ 0:

G(y − ε, y) = G(y + ε, y) (17)
dG
dx

∣∣∣∣
x=y−ε

=
dG
dx

∣∣∣∣
x=y+ε

+ 1· (18)

This leads to:

x ≤ y G(x, y) = G(ab)(y)ψab(x) +G(ba)(y)ψba(x)

+
ψab(y)ψba(x)

Wab
(19)

x ≥ y G(x, y) = G(ab)(y)ψab(x) +G(ba)(y)ψba(x)

+
ψba(y)ψab(x)

Wab
(20)

(x < y means that point x is closer to a than y ).
For the derivative in a, we obtain:

G′(ab)(y)=G(ab)(y)ψ′ab(a)+G(ba)(y)Wab+ψab(y). (21)

Equations (16, 21) can be written in matrix form:

G′(y) = NG(y)− L(y) (22)

where N is a (2B × 2B) square matrix with elements:

N(αβ)(µη) = δαµδβηψ
′
αβ(α) + δαηδβµWαβ (23)

and L(y) is a (2B × 1) vector:

L(y)(αβ) = − (δαaδβbψab(y) + δαbδβaψba(y)) . (24)

Equation (22) together with the boundary condi-
tion (5) lead to:

G(y) = T L(y) (25)
with the square matrix T = (C +DN)−1D. (26)

We deduce:

G(ab)(y) = T(ab)(ab)L(y)(ab) + T(ab)(ba)L(y)(ba) (27)

G(ba)(y) = T(ba)(ab)L(y)(ab) + T(ba)(ba)L(y)(ba) (28)

and, after simple manipulations:

G(y, y) = T(ab)(ab)

(
−ψ2

ab(y)
)

+ T(ba)(ba)

(
−ψ2

ba(y)
)

+
(
−T(ab)(ba) − T(ba)(ab) +

1
Wab

)
(ψab(y)ψba(y)) · (29)

To take the trace of G, we must first integrate
ψ2
ab(y), ψ2

ba(y) and ψab(y)ψba(y) on [ab]. We have shown
in [9] that: ∫

[ab]

ψ2
ab = −∂γψ′ab(a) (30)∫

[ab]

ψ2
ba = −∂γψ′ba(b) (31)∫

[ab]

ψab ψba = −∂γWab. (32)

Thus:∫
[ab]

G(y, y) = T(ab)(ab)∂γψ
′
ab(a) + T(ba)(ba)∂γψ

′
ba(b)

+
(
T(ab)(ba)+T(ba)(ab)

)
∂γWab −

1
Wab

∂γWab· (33)

Now, we sum over all the bonds. With the definitions of
the matrices N and T , we obtain (C and D don’t depend
on γ):∫

Graph

G(y, y) = Tr
(
(C +DN)−1∂γ(C +DN)

)
−∂γ

∑
[ab]

lnWab

 · (34)

Finally, with the observation that Tr((C +
DN)−1∂γ(C + DN)) = ∂γ ln det(C + DN), we get
the spectral determinant (up to an inessential multiplica-
tive constant):

S(γ) ≡ det(H + γ) =
∏
[αβ]

1
Wαβ

det(C +DN)· (35)

where
∏

[αβ] . . . means product over all the bonds.
The expression (35) is valid for quite general (even

non-local) boundary conditions3.
It is worthwhile to mention that equation (35) can be,

heuristically, recovered by a path integral approach (see [8]
([10]) for the Neumann case without (with) an external
potential). We will not use this way in the present work.

Coming back to (35) and introducing the matrix R:

R ≡ (
√
γ1 +N)(

√
γ1−N)−1 (36)

3 For local coupling, C and D are block-diagonal matrices.
N is always block-diagonal but not built with the same blocks
as C and D. Thus, no further simplification appears in that
case when evaluating det(C +DN) in equation (35).
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we get:

det(H + γ) =
∏
[αβ]

1
Wαβ

1
det(1 +R)

× det(C −√γD) det(1−QR) (37)

Q = (
√
γD − C)−1(

√
γD + C). (38)

Let us remark that, for the free case (V (x) ≡ 0), the
matrix R is quite simple. Indeed, in that case:

N(αβ)(µη) = δαµδβη coth
√
γlαβ + δαηδβµ

( −1
sinh
√
γlαβ

)
(39)

R(αβ)(µη) = δαηδβµe−
√
γlαβ . (40)

The matrix R couples any arc (αβ) to its time-reversed
(βα). Those considerations will show useful at the end of
this paper.

Now, let us show that, for permutation-invariant
boundary conditions (and V (x) 6= 0), the spectral deter-
minant can be expressed in terms of a vertex (V × V )
matrix.

4 Permutation-invariant boundary conditions

The boundary conditions are now given by equa-
tions (6, 7).

4.1 With an external potential

To compute the spectral determinant, we will proceed as
before but, this time, we will consider, for each bond, two
other independent solutions, χαβ and χβα, of the equa-
tion (H + γ)χ = 0. They are chosen, now, to satisfy the
following conditions:

cαχαβ(α) + dα
dχαβ
dxαβ

(α) = 1 (41)

cβχαβ(β) + dβ
dχαβ
dxβα

(β) = 0 (42)

cαχβα(α) + dα
dχβα
dxαβ

(α) = 0 (43)

cβχβα(β) + dβ
dχβα
dxβα

(β) = 1· (44)

As before, we will set:

dχαβ
dxαβ

(α) ≡ χ′αβ(α) ;
dχβα
dxβα

(β) ≡ χ′βα(β)·

The Wronskian of χαβ and χβα writes:

Wαβ ≡ χαβ
dχβα
dxαβ

− χβα
dχαβ
dxαβ

=Wβα· (45)

With equations (41–44), we get the useful relations:

cαWαβ =
dχβα
dxαβ

(α) ; dαWαβ = −χβα(α)· (46)

Let us show what happens for the Green’s function
G(x, y). We still assume y ∈ [ab].

For x ∈ [αβ] 6= [ab], we write:

G(x, y) = B(αβ)(y)χαβ(x) +B(βα)(y)χβα(x) (47)

where the quantities B(αβ)(y) are to be determined.
Of course, if x ∈ [ab], an additional term of the form

“χabχba/Wab” must appear (see Eqs. (19, 20)).
Nevertheless, with the boundary conditions (6,7), it

can be shown that, for any vertex α, the quantityB(αβi)(y)
where βi is a nearest neighbour of α, does not depend on i.
In those conditions, we can set: B(αβi)(y) ≡ Bα(y) and
write for the Green’s function:

i) x ∈ [αβ] 6= [ab]
G(x, y) = Bα(y)χαβ(x) +Bβ(y)χβα(x); (48)

ii) x ∈ [ab]
x ≤ y G(x, y) = Ba(y)χab(x) +Bb(y)χba(x)

+
χab(y)χba(x)
Wab

(49)

x ≥ y G(x, y) = Ba(y)χab(x) +Bb(y)χba(x)

+
χba(y)χab(x)
Wab

· (50)

The boundary conditions lead to the equation:

M B = L (51)

where M is a (V × V ) matrix with elements:

Mαα = 1 + tα

(
mα∑
i=1

χαβi(α)

)
+ wα

(
mα∑
i=1

χ′αβi(α)

)
(52)

Mαβ = (cαwα − tαdα)Wαβ if [αβ] is a bond (53)
= 0 otherwise.

B and L are two (V × 1) vectors of components:

Bα = Bα(y) (54)
Lα = − (δαaχab(y)(cawa − data)

+δαbχba(y)(cbwb − dbtb)) . (55)

Solving (51) and taking the trace of G with the rela-
tions [9]:

da

∫
[ab]

χ2
ab = ∂γχab(a) (56)

db

∫
[ab]

χ2
ba = ∂γχba(b) (57)∫

[ab]

χab χba = −∂γWba (58)
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we finally get the spectral determinant (still up to a mul-
tiplicative constant):

det(H + γ) =
∏
[αβ]

1
Wαβ

det(M)· (59)

Comparing the asymptotic behaviours of the right-
hand sides of (35) and (59) when γ → ∞, we establish
the following equality that is valid in the presence of a
potential V (x) and for permutation-invariant boundary
conditions:∏

[αβ]

1
Wαβ

det(C +DN) =
∏
[αβ]

1
Wαβ

det(M)· (60)

Recall that, for such boundary conditions, C and D are
block-diagonal matrices given by equations (6, 7).

4.2 Free case

Let us study the case V (x) ≡ 0 still with permutation-
invariant boundary conditions.

With the notations

ηα =
cα +

√
γdα

cα −
√
γdα

(61)

ρα =
µ−α − µ+

α

1 +mαµ
−
α

(62)

µ±α =
tα ±

√
γwα

cα ±
√
γdα

(63)

(60, 37, 38) lead to:

det(1−QR) =

2−V
∏
α

(ραηα)
∏
[αβ]

(
1− ηαηβe−2

√
γlαβ

)
det M̃ (64)

with the (V × V ) M̃ matrix:

M̃αα =
2

ραηα
− mα

ηα
+

1
ηα

mα∑
i=1

(
1 + ηαηβie

−2
√
γlαβi

1− ηαηβie−2
√
γlαβi

)
(65)

M̃αβ =
−2e−

√
γlαβ

1− ηαηβe−2
√
γlαβ

if [αβ ] is a bond (66)

= 0 otherwise.

For permutation-invariant boundary conditions, the
matrices C, D and Q (Eq. (38)) are block-diagonal. The
block Qα takes the simple form:

Qα = ηα (−1 + ραFα) . (67)

The only non-vanishing elements of theQR matrix are:

(QR)(αβ)(µα) = (ραηα − ηα δβµ) e−
√
γlαµ . (68)

In view of the following application, we will say that
ραηα − ηα is the reflection factor in α and ραηα is the
transmission factor.

Expanding

ln det(1−QR) = −
∞∑
n=1

1
n

Tr (QR)n (69)

and following the development of [8], we finally get:

det(1−QR) =
∏
eC

(
1− µ(C̃)e−

√
γl( eC)

)
(70)

where the product is taken over all primitive orbits C̃.
Recall that an orbit is said to be primitive if it cannot be
decomposed as a repetition of any smaller orbit. l(C̃) is
the length of C̃.

An orbit being a succession of arcs . . . (τα)(αβ) . . .
with, in α, a reflection (if τ = β) or a transmission (if
τ 6= β), the weight µ(C̃), in equation (70), will be the
product of all the reflection – or transmission – factors
along C̃.

Henceforth, we will consider the situation where the
spectral parameter γ is equal to 1 and, in addition:

ραηα = 1 ; ηα = η ; lαβ = l

for all the vertices and bonds of the graph.
With u ≡ e−l, (64) takes the simple form:∏

gCm

(
1− (1− η)nR(gCm)um

)
= (1− η2u2)B−V

× det
(
(1− η2u2)1 + ηu2Y − uA

) (
≡ Z−1

)
(71)

m is the number of steps of the primitive orbit C̃m and
nR(C̃m) is the number of reflections (backtrackings) oc-
curing along C̃m.

Y is a (V × V ) matrix with elements Yαβ = δαβ mα

and A is the adjacency matrix (Aαβ = 1 if [αβ] is a
bond, = 0 otherwise).

Setting η = 1 implies nR(C̃m) = 0 in the left-hand
side of (71): we recover Ihara’s formula [15,16] where only
primitive orbits without tails and backtrackings are kept.
(Ihara [15] established this formula for a regular graph;
the proof for a general graph is done in [16] using a direct
– and somewhat tedious – counting technique).

Now, let us consider random walks with a given num-
ber of backtrackings. Equations (69) and (68) suggest an
expansion in closed random walks on the graph. Taking Z
in (71), we get:

u
d lnZ

du
=
∞∑
m=2

m∑
p=0

V∑
α=1

Np
m(α) (1− η)p um (72)

where Np
m(α) is the number of m-steps closed random

walks on the graph starting at α, with p backtrackings.
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For the complete graph (each vertex α is linked to all
the other vertices of the graph), we get the results:

N0
2 (α) = 0

N0
3 (α) = (V − 1)(V − 2)

N0
4 (α) = (V − 1)(V − 2)(V − 3)

N0
5 (α) = (V − 1)(V − 2)(V − 3)(V − 4)

N0
6 (α) = (V − 1)(V − 2)(V 3 − 9V 2 + 29V − 32) (73)

and also:

N1
2 (α) = N1

3 (α) = N1
4 (α) = 0

N1
5 (α) = 5(V − 1)(V − 2)(V − 3)

N1
6 (α) = 6(V − 1)(V − 2)(V − 3)2. (74)

In [17], the same problem is studied with probabilis-
tic methods but for open random walks. Closed walks are
therefore obtained by identifying the starting and end-
ing points but nothing is said about an eventual back-
tracking occurring at that point. So, the results of [17]
(let us call them N p

m(α)) will, in general, differ from
ours. For instance, we checked for the complete graph,
the relationship:

N 0
m(α) = N0

m(α) +
1
m
N1
m(α). (75)

(This comes from the complete symmetry of this graph).

5 Conclusion

We have computed the spectral determinant for a
Schrödinger operator on a graph with quite general
boundary conditions. The result is expressed in terms
of an arc matrix. When the conditions are permutation-
invariant, another expression can be derived in terms of
a vertex matrix. Comparison of both expressions allowed
us to study reflection properties of random walks on any
graph.

The expansion (70) of the spectral determinant in pe-
riodic orbits is the basis for obtaining a trace formula
(see, for instance, [8] where this is done in great details
for Neumann boundary conditions). Unfortunately, in the
general case, the reflection and transmission factors are γ-
dependent and technical difficulties prevent from getting
a trace formula in an appealing form. So, this problem is
still an open one.

I acknowledge Pr. A. Comtet and Dr. C. Texier for stimulating
discussions.
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